B.Tech 1st Year 1st Semester First Unit Test, September 2018 CHEMISTRY 1 [BSCH-101] <u>Set-1</u>

(Students are requested to write down the SET No. in the Answer sheet)

Time allotted: 1 hr

Full marks: 25

Group A

Answer any <u>five</u> of the following <u>six</u> questions $5 \times 1 = 5$

1 (a) Ψ should not be

(i) Finite (ii) Normalized (iii) Multi-valued (iv) Continuous

(b) Which of the following is known as the Schrödinger Equation?

(i) $E = h\gamma$ (ii) $H\psi = E\psi$ (iii) $E = mc^2$ (iv) $\lambda = h/p$

(c) Unit of Frequency is

(i) cm (ii) sec. (iii) hertz (iv) gm

- (d) Source of light covers the UV- region is
 - (i) Sodium Lamp (ii) Deuterium Lamp (iii) Magnesium Lamp (iv) Radium Lamp
- (e) Which among these hydrogen halides produce anti-Markownikoff addition product?
 - (i) HF (ii) HCl (iii) HBr (iv) HI

(f) SNi occurs with

(i) inversion of configuration (ii) racemization (iii) retention of configuration (iv) none

Group B

Answer any **four** of the following **six** questions

- (a) A particle in a one dimensional box behaves like a classical oscillator when the walls are infinitely far apart - Justify
 - (b) Calculate the de Broglie wavelength associated with a stone having velocity 1 m s⁻¹ and mass 100g; on the other side an electron having velocity 6 X 10^5 m s⁻¹ and mass 9.1 x 10^{-31} kg. Which one of these is meaningful and why? 3+2=5

3. (a) Prove that,
$$\left(V - \frac{h^2}{8\pi^2 m}\nabla^2\right)\Psi = E\Psi$$

- (b) The Kinetic energy of a subatomic particle is 5.65 X 10^{25} J. Calculate the frequency of the particle wave
- (c) Why $n \neq 0$ is taken in Zero Point Energy calculations? 2+2+1=5

- 4. (a) Write the complete electromagnetic spectrum of rays in a Table form.
 - (b) Give appropriate reasons -- Why above EMS is important and useful for Spectroscopy Studies?

	3+2=5
5. (a) Write the Selection Rules of Electronic Transitions.	
(b) What are Fluorescence and its application in Medicine?	2+3=5

- 6. (a) Suggest two pathways to convert benzene to n-propylbenzene. Which among these is a better method? Justify your answer with mechanism.
 - (b) Why $S_N 1$ reaction is associated with racemization? 4 + 1 = 5
- 7. (a) Polar protic solvent is suitable for $S_N 1$ reaction while polar aprotic solvent is suitable for $S_N 2$ reaction. Justify.
 - (b) Halogens are ortho-para orienting and deactivating. State reason.
 - (c) Write the reagent for following conversion:

 $CH_3CH_2CH=CH_2 \rightarrow CH_3CH_2CH(OH)CH_3$ 2+2+1=5

B.Tech 1st Year 1st Semester First Unit Test, September 2018 CHEMISTRY 1 [BSCH-101] <u>Set-2</u>

(Students are requested to write down the SET No. in the Answer sheet)

Time allotted: 1 hr

Full marks: 25

Group A

Answer any <u>five</u> of the following <u>six</u> questions $5 \ge 1 = 5$

- 1. (a) Solutions to Schrodinger's equation are labeled with
 - (i) phi (ii) psi (iii) mu (iv) pi
 - (b) Schrodinger's equation described the
 - (i) procedure for splitting an atom (ii) complement of the wave function
 - (iii) behavior of "matter" waves (iv) motion of light
 - (c) Radiations of higher frequency have
 - (i) higher wavelength (ii) greater energy (iii) lower energy (iv) none
- (d) Which of these exhibit Fluorescence?
 - (i) NaCl (ii) BaF_2 (iii) CaF_2 (iv) $CaCl_2$
- (e) Identify the most stable carbocation:
 - (i) vinyl carbocation (ii) allyl carbobcation (iii) ethyl carbocation (iv) benzyl carbocation
- (f) Which among the following reactions of benzene is a reversible reaction?
 - (i) nitration (ii) halogenations (iii) Friedel craft alkylation (iv) sulphonation

Group B

Answer any four of the following six questions

- 2. (a) What are the Eigen values and Eigen functions?
 - (b) Prove that De Broglie wavelength λ of an electron of kinetic energy E is given by $\lambda = \frac{h}{\sqrt{2meV}}$.
 - (c) Calculate the wavelength of an electron moving with a velocity of 10^4 m. s⁻¹ 2+2+1=5
- 3. (a) What are the applications of Particle in 1 dimensional box?
 - (b) Assuming an electron to be confined in a one dimensional box 2.0 nm in length. Find the lowest three energy levels for the electron 2+3=5

- 4. (a)Write in brief the Principles of Spectroscopy.
 (b)Write the applications of Fluorescence.
 3+2 = 5
- 5. (a)Write the Absorption Law and its Limitations.
 (b)Explain the function of UV Spectrophotometer with a Schematic Diagram. 2+3 = 5
- 6. (a) Explain how saytzeff product and Hofmann product can be selectively produced as major products by elimination reaction taking suitable examples.
 (b) Why S_N2 reaction is associated with inversion of configuration? 4 + 1 = 5
- 7. (a) Compare S_N1 and S_N2 reactions in terms of substrate preference and strength of nucleophile.
 (b) Explain the role of Lewis acid in halogenation of benzene.
 - (c) Write the reagent for following conversion: $CH_3CH_2CH=CH_2 \rightarrow CH_3CH_2CH_2CH_2OH$ 2+2+1=5